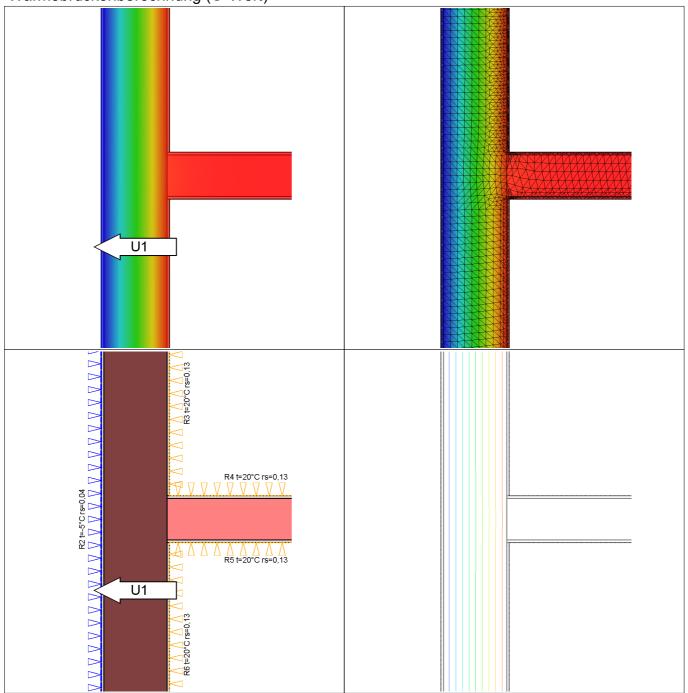


Wärmebrücke Innenwand / Außenwand

Beispiel einer detaillierten Wärmebrückenberechnung

Die Marke DeltaUWB stellt einen besonderen Bezug zur detaillierten Wärmebrückenberechnung her. Die detaillierte Wärmebrückenberechnung ist in vielen Projekten eine hervorragende Möglichkeit, mit geringen Planungshonoraren Baukosten zu senken.


Wir als Ingenieurbüro Schwark haben drei wesentliche Kunden. Zum einen Bauherren, die ein Wohn- oder Nichtwohngebäude kaufen, bauen oder sanieren möchten und zum anderen Planer, Architekten und andere Energieberater, die Unteraufträge an uns vergeben oder einzelne Planungsdetails an uns auslagern. Hierzu zählen bspw. die detaillierte Wärmebrückenberechnung oder die Simulation des sommerlichen Wärmeschutzes.

https://www.deltauwb.de/waermebrueckenberechnung/

Datum: 4.1.2019

Wärmebrückenberechnung (Ψ -Wert)

Nr.	Name	Länge		Korrekturfaktor
U1	U1	2 640 m	0.21 W/(m ² K)	F e (1.00)

Wärmebrückenverlustkoeffizient

 Ψ = +0,000 W/(mK)

Datum: 4.1.2019

Materiallegende:

Name	Lambda
Kalksandstein	0,990 W/(mK)
Porenbeton-Plansteine PP, DM (500 kg/m³)	0,080 W/(mK)
Putzmörtel aus Kalk, Kalkzement und hydraulischem Kalk	1,000 W/(mK)

Randbedingungen und Wärmeströme:

	- tarras our rigori gori arra ri arras our						
Nr	Temp	Rsi/Rse	Länge	Wärmestrom			
R 1			1,06 m				
R 2	-5,00 °C	0,04	2,64 m	-13,852 W/m			
R 3	20,00 °C	0,13	1,19 m	6,222 W/m			
R 4	20,00 °C	0,13	1,00 m	0,703 W/m			
R 5	20,00 °C	0,13	1,00 m	0,704 W/m			
R 6	20,00 °C	0,13	1,19 m	6,223 W/m			

Berechnung des thermischen Leitwertes L2D für 2 Temperatur-Randbedingungen

Leitwert L2D	+0,55408 W/mK
Psi-Wert	-0,00025 W/mK

Datum: 4.1.2019

Eingabedaten - Materialbereiche

Bild Name				Lambda	
	M1 Porenbeton-Plansteine PP, DM (500 kg/m³)			0,080 W/(mK)	
Name Nr X				Y	
Kontur	Kontur 1 +0,38 m			+1,19 m	
	2 +0,02 m		+1,19 m		
			3	+0,02 m	-1,46 m
			4	+0,38 m	-1,46 m

Bild Name				Lambda	
	M2	Kalksandstein	0,990 W/(mK)		
Name Nr X				Υ	
Kontur 1			+1,40 m	-0,02 m	
			2	+0,38 m	-0,02 m
			3	+0,38 m	-0,25 m
			4	+1,40 m	-0,25 m

Bild		Name			Lambda
	МЗ	Putzmörtel aus Kalk, Kalkzement und	1,000 W/(mK)		
Name			Nr	X	Υ
Kontur			1	+0,02 m	+1,19 m
			2	+0,00 m	+1,19 m
			3	+0,00 m	-1,46 m
			4	+0,02 m	-1,46 m
Kontur			1	+0,40 m	+1,19 m
			2	+0,38 m	+1,19 m
			3	+0,38 m	+0,00 m
			4	+0,40 m	+0,00 m
Kontur			1	+0,40 m	-0,27 m
			2	+0,38 m	-0,27 m
			3	+0,38 m	-1,46 m
			4	+0,40 m	-1,46 m

Bild		Name			Lambda
	M4	Putzmörtel aus Kalk, Kalkzement und	1,000 W/(mK)		
Name			Nr	X	Υ
Kontur			1	+1,40 m	+0,00 m
			2	+0,38 m	+0,00 m
			3	+0,38 m	-0,02 m
			4	+1,40 m	-0,02 m
Kontur			1	+1,40 m	-0,26 m
			2	+0,38 m	-0,26 m
			3	+0,38 m	-0,27 m
			4	+1,40 m	-0,27 m

Eingabedaten - Randbereiche

	Name	Temperature	Rsi/	Rse	Länge
R2	Außenwand, Dach, Wärmestrom horizontal und vertikal	-5,00 °C	0,	04	2,64 m
		Х			Υ
Anfangspunkt		+0,00 m		+1,19 m	

Wärmebrückenberechnung

Datum: 4.1.2019

	X	Y
Endpunkt	+0,00 m	-1,46 m

	Name	Temperature	Rsi/	'Rse	Länge
R3	Aussenwände, Innenwände, Decken beidseits beheizt	+20,00 °C	0,13		1,19 m
		Х			Υ
Anfangspunkt		+0,40 m		+0,00 m	
Endpunkt		+0,40 m		+1,19 m	

	Name	Temperature	Rsi/	'Rse	Länge
R4	Aussenwände, Innenwände, Decken beidseits beheizt	+20,00 °C	0,	13	1,00 m
		X			Υ
Anfangspunkt		+1,40 m		+0,00 m	
Endpunkt		+0,40 m		+0,00 m	

	Name	Temperature	Rsi/	Rse	Länge
R5	Aussenwände, Innenwände, Decken beidseits beheizt	+20,00 °C	0,13		1,00 m
		X		Y	
Anfangspunkt		+0,40 m		-0,27 m	
Endpunkt		+1,40 m		-0,27 m	

	Name	Temperature	Rsi/	'Rse	Länge
R6	Aussenwände, Innenwände, Decken beidseits beheizt	+20,00 °C	0,13		1,19 m
		X		Y	
Anfangspunkt		+0,40 m		-1,46 m	
Endpunkt		+0,40 m		-0,27 m	

Eingabedaten - U-Werte

	Name			Fx	
U1	U1		0,21	1,00	
X		Υ	Ausrichtung		
+0,40 m		-0,55 m	180 °		

Datum: 4.1.2019

```
********************
PSI - WERT BERECHNUNG
*******************
NETZGENERIERUNG
Vereinigen der Wärmebrückenbereiche... fertig
Generierung der Elementzellen
  Es wurden: 735 Elementzellen erzeugt.
Topologie optimieren... fertig
ENDE: NETZGENERIERUNG
Zusammensetzen der Finite-Elemente-Struktur... fertig
 Anzahl der Elemente___: 913
 Anzahl der Knoten : 549
START: FINITE - ELEMENTE - BERECHNUNG
Matrizen initialisieren...Anzahl der Knoten: 549
Zusammenbau der Steifigkeitsmatrix und des Lastvektors... fertig
Gleichungssystem lösen:
 Begin der Iteration. Nach dem Verfahren der konjugierten Gradienten:
...fertig, das Gleichungssystem wurde gelöst.
  Anzahl der Iterationen: 116
  Die Temperaturen in den Netzknoten sind berechnet.
ENDE: FINITE - ELEMENTE - BERECHNUNG
************
*** KONVERGENZ - TEST ************
*** Nach DIN10211:2008-04, A.2
 Konvergenz - Struktur erzeugen... fertig
 Anzahl der Elemente___: 3652
 Anzahl der Knoten : 2010
START: FINITE - ELEMENTE - BERECHNUNG
Matrizen initialisieren...Anzahl der Knoten: 2010
Zusammenbau der Steifigkeitsmatrix und des Lastvektors... fertig
Gleichungssystem lösen:
 Begin der Iteration. Nach dem Verfahren der konjugierten Gradienten:
...fertig, das Gleichungssystem wurde gelöst.
  Anzahl der Iterationen: 262
  Die Temperaturen in den Netzknoten sind berechnet.
ENDE: FINITE - ELEMENTE - BERECHNUNG
Summe der Absolutwerte aller eindringenden Wärmeströme:
                        [W/m]: 13,853
  aus der Basisberechnung
  aus der Konvergenzberechung [W/m]: 13,852
Konvergenz [%]: 0 \le 1
Berechnung der Wärmeströme
Randbedingung Typ
                    Wärmestrom Länge Temperatur Rs(i,e)
                     q [W/m]
                                [m]
                                                   [m2K/W]
       1
                       0,000
                                1,060
                                          --
           Neumann
                                                    --
              Robin
       2
                      -13,852
                                2,640
                                         -5,000
                                                   0,040
                      0,703
                                         20,000
                                1,000
                                                    0,130
       4
              Robin
       5
              Robin
                      0,704
                                1,000
                                        20,000
                                                   0,130
       3
                      6,222
                                1,185
                                        20,000
                                                   0,130
              Robin
              Robin
                       6,223
                                1,185
                                         20,000
                                                    0,130
             Summe : -0,00014
Gesamtwärmestrom(positiv)
                                  Q+ = 13,85204 [W/m]
Gesamtwärmestrom(vom Innenraum ausgehend) Q = 13,85204 [W/m]
                                     _____
```

Psi-Wert Berechnung:

Datum: 4.1.2019

```
Tabelle der ungestörten U-Werte
Nummer Beschreibung
                             Länge U-Wert ungestört
Temperaturkorrekturfaktoren
                                       [W/m2K]
                              [m]
                                                 Bezeichnung
                                                              Faktor
                             2,640
 1 U1
                                       0,210
                                                  F e
                                                               1,000
Berechnung des thermischen Leitwertes L2D für 2 Temperatur-Randbedingungen
Temperaturdifferenz (deltaT) : 25,00000 [ K ]
L2D = Q / deltaT
                       = 0,55408 [ W/mK ]
                       0,554 [ W/mK ]
-(0,210 * 2,640 * 1,000) = -0,554 [ W/mK ]
                     ==========
Psi-Wert
                      -0,00025 [ W/mK ]
************
*** E N D E der BERECHNUNG
*************
```